Toggle Health Problems and D

Cerebral Palsy and Vitamin D

Cerebral Palsy is strongly associated with preterm birth
Adding Vitamin D or Magnesium or Omega-3 during pregnancy has been found to reduce preterm births
   Suspect that adding all 3 early in pregnancy will greatly reduce preterm births and Cerebral Palsy

Brain development starts early, need Vitamin D, Omega-3, and Magnesium ASAP

Fetal Development
Ensure a healthy pregnancy and baby - take Vitamin D before conception has the following
Start Vitamin D soon if pregnant VDW 9923

Cerebral Palsy much worse if low vitamin D - Aug 2018

Vitamin D status of children with cerebral palsy: Should vitamin D levels be checked in children with cerebral palsy?
North Clin Istanb. 2018 Aug 8;5(4):341-347. doi: 10.14744/nci.2017.09581.
Akpinar P1.
OBJECTIVE: We aimed to investigate the vitamin D status of children with cerebral palsy (CP).

A total of 274 children (111 females and 163 males), aged between 1 and 19 years with CP, who came to the Physical Medicine and Rehabilitation, Pediatric Rehabilitation Outpatient Clinic between October 2013 and March 2017, were included in our study. Demographics, data concerning the details of each child's comorbidity, the Gross Motor Function Classification System (GMFCS), and Manual Ability Classification System (MACS) scores were recorded. The serum 25 hydroxy vitamin D [25(OH)D], calcium (Ca), phosphate (P), and parathormone (PTH) levels were also recorded.

The mean age of children with CP was 7.59±6.09 years. The distribution by the CP type was 24.8% spastic unilateral, 59.8% spastic bilateral, 1.4% dyskinetic, 0.7% ataxic, 7.6% mixed, and 5.1% unclassified. The serum 25(OH)D levels of the 235 children with CP were measured. There were 79 children at the 25(OH)D level ≤12 ng/ml, regarded as vitamin D deficiency; 62 children at the 25(OH)D level 12-≤20 ng/ml, considered as vitamin D insufficiency, 43 children at the 25(OH)D level 20-≤30 ng/ml, considered as vitamin D sufficiency, and 15 children at the 25(OH)D level >30 ng/ml. A total of 36 children were already taking vitamin D supplements. There was a significant correlation between the 25(OH)D levels and GMFCS and MACS levels and associated impairments such as the epilepsy history, intellectual delay, teeth problems, and growth retardation (p<0.05).

Our results revealed that the children with CP who are not ambulatory (GMFCS levels IV-V) and have associated impairments were prone to vitamin D deficiency, and thus should be checked for vitamin D.
 Download the PDF from Vitamin D Life

Can you prevent Cerebral Palsy? Here’s how Vitamin D could play a powerful role in preventing CP Aug 2017

Online Aug 2017
South African mother, who is a hospital doctor, gave birth prematurely and her daughter had Cerebral Palsy
She later learned about the great reduction in premature births by the efforts of Grassroots Health

  • Just to make the link to CP clear – Cerebral Palsy occurs in 60% of all premature births and is associated with intra-uterine infections of pregnancy.
  • If you can prevent infections and premature birth, you can very likely help prevent Cerebral Palsy.

From the Web

Cerebral Palsy—Trends in Epidemiology and Recent Development in Prenatal Mechanisms of Disease, Treatment, and Prevention Feb 2017
Full free PDF online

  • "Overall, the total rate of CP is relatively stable, yet the contribution of prematurity and its complication to the prevalence of this syndrome are steadily increasing due to improvements in obstetric and neonatal care"
  • "Any intervention that will lead to modification of the risk factors for CP as well as for the prevention or treatment of the underlying mechanisms that leads to this syndrome eventually will affect its prevalence."


Cerebral Palsy >100X more likely if early preterm

Cerebral Palsy Among Children Born Moderately and Late Preterm- 2014

CP Risk Factors


What are the risk factors for cerebral palsy? NIH

  • Low birth weight or preterm birth. Infants born preterm (defined as before 37 weeks of pregnancy) and infants who weigh less than 5.5 pounds at birth are at greater risk of cerebral palsy than are early term (defined as 37 weeks to 38 weeks of pregnancy) and full-term (defined as 39 weeks to 40 weeks of pregnancy) infants and those who are heavier at birth. The earlier the birth and the lower the infant’s birthweight, the greater the risk.
  • Multiple gestations. Twins, triplets, and other multiple births are at higher risk of cerebral palsy. The risk is also greater for an infant whose twin or triplet dies before or shortly after birth.
  • Infertility treatments. Infants born from pregnancies resulting from the use of certain infertility treatments are at higher risk for cerebral palsy than are infants born from pregnancies not related to infertility treatments. Much of this increased risk may be due to the fact that infertility treatments are more likely to result in preterm delivery and multiple gestations.
  • Infections during pregnancy. Toxoplasmosis, rubella (German measles), cytomegalovirus, and herpes can infect the womb and placenta, leading to brain damage in the fetus.
  • Fever during pregnancy. Sometimes fever in the mother during pregnancy or delivery can lead to brain damage in the fetus, resulting in cerebral palsy.
  • Blood factor between mother and fetus does not match. Those who have a certain protein found on red blood cells—abbreviated Rh—are Rh positive; those who do not have the protein are Rh negative. If a mother’s Rh factor is different from that of the fetus, her immune system may attack the blood cells of the fetus, including blood cells in the brain, which can lead to brain damage.
  • Exposure to toxic chemicals. If a mother is exposed to a toxic substance, such as high levels of methyl mercury (found in some thermometers and in some seafood), during pregnancy the fetus is at higher risk of cerebral palsy.
  • Maternal medical conditions:
    • Abnormal thyroid function
    • Intellectual and developmental disability
    • Too much protein in the urine
    • Seizures
  • Complicated labor and delivery. Infant heart or breathing problems during labor and delivery and immediately after birth increase the risk of cerebral palsy.
  • Jaundice (pronounced JAWN-dis). Jaundice, which causes an infant’s skin, eyes, and mouth to turn a yellowish color, can be a sign that the liver is not working normally. Jaundice occurs when a substance called bilirubin (pronounced BIL-uh-roo-bin) builds up faster than the liver can clear it from the body. This condition is common and is usually not serious. However, in cases of severe, untreated jaundice, the excess bilirubin can damage the brain and cause cerebral palsy.
  • Seizures. Infants who have seizures are more likely to be diagnosed with cerebral palsy later in childhood.

Some risk factors for acquired cerebral palsy are;

  • Infancy. Infants are at greater risk than older children for an event that causes brain damage.
  • Preterm or low birthweight. Children born preterm or at a low birthweight have a higher risk for acquired cerebral palsy.
  • Not getting certain vaccinations. Childhood vaccinations can prevent brain infections that can cause cerebral palsy.
  • Injury. Not taking certain safety precautions for infants or lack of adult supervision can lead to injury that can cause cerebral palsy.
  • Most of the CP risk factors are also risk factors for low vitamin D
    - even twins or infertility treatments.
       Observation by Vitamin D Life

Vitamin D in Iran CP 28 ng, other children in hospital 30 ng - 2018

Prevalence of Vitamin D Deficiency and Associated Risk Factors in Cerebral Palsy A study in North-West of Iran.
Iran J Child Neurol. 2018 Spring;12(2):25-32.
Toopchizadeh V1, Barzegar M2, Masoumi S1, Jahanjoo F1.

This study aimed to compare the prevalence of 25-hydroxyvitamin D deficiency in cerebral palsied (CP) with healthy control children and evaluate possible correlations between 25-hydroxyvitamin D and severity of CP and motor function.

MATERIALS & METHODS: In this case-control study, serum levels of 25-hydroxyvitamin D were evaluated in 65 children with CP and compared with 65 healthy children referred to Tabriz Pediatric Hospital, Tabriz, northwestern Iran in 2015. Blood samples were taken to measure levels of 25-hydroxyvitamin D, calcium, phosphorus and alkaline phosphatase. Regarding 25-hydroxyvitamin D levels, patients were classified as sufficient (≥30 ng/ml), insufficient (20-30 ng/ml) and deficient (<20 ng/ml).

RESULTS: Mean 25-hydroxyvitamin D levels were 28.03±24.2 ng/ml in patients and 30±1.94 ng/ml in control group. 25-hydroxyvitamin D deficiency was seen in 44.6% of CP and 18.5% of healthy children. There was no significant difference in 25-hydroxyvitamin D levels between boys and girls, CP types and use of antiepileptics in case group. There was significant negative correlation between age and 25-hydroxyvitamin D levels (P=0.007). The correlation between 25-hydroxyvitamin D and Gross Motor Function Classification System was not significant.

CONCLUSION: 25-hydroxyvitamin D deficiency is common in children with CP in comparison with healthy children. There was significant negative correlation between age and 25-hydroxyvitamin D levels. Routine measurement of 25-hydroxyvitamin D levels and its proper treatment is recommended to prevent its deficiency and subsequent consequences.

Cerebral Palsy supplementation with Vitamin D, some also needed Iron - Aug 2019

 Download the PDF from Vitamin D Life

Patients’ mean age was 11.1 ± 4.9 years; 43 (62.3%) were male; and 56 (81.2%) had moderate-to-severe CP. Thirty-five (50.7%) used a nasogastric tube and/or gastrostomy; 15.4% were underweight and 73.8% were eutrophic, all with normal height. Twenty (29%) and 4 patients (6.2%) received VD and iron supplementation, respectively. Albuminaemia was normal in all patients. Mean 25(OH)D level was 24.3 ± 8.8 ng/mL; 33 patients (47.8%) had insufficiency and 21 (30.4%) deficiency; 36 patients (52.2%) had low ferritin levels. There was no association between 25(OH)D level and the other variables studied. Low ferritin levels were found to be associated with older age (P = .03), being male (P = .006), and feeding tube use (P = .006).

The patients studied mainly had moderate-to-severe CP, with a high frequency of suboptimal VD values and low plasma ferritin; few patients received VD and/or iron supplementation. We suggest monitoring 25(OH)D and ferritin levels due to the high rate of deficiency of these nutrients; public hospitals should be equipped with drugs to treat these deficiencies.

New title for this page March 2019. caused the visitor count to reset.
There have actually been 5680 visitors to this page since it was originally made

Created by admin. Last Modification: Monday August 12, 2019 14:39:07 GMT-0000 by admin. (Version 31)

Attached files

ID Name Comment Uploaded Size Downloads
12466 CP Vit D, Iron.pdf PDF 2019 admin 12 Aug, 2019 14:07 568.75 Kb 251
11554 CP Gest age.jpg admin 13 Mar, 2019 16:05 40.94 Kb 1211
11552 CP 2018.jpg admin 13 Mar, 2019 14:12 64.02 Kb 1867
11551 CP 2018.pdf PDF 2018 admin 13 Mar, 2019 14:11 203.04 Kb 451
9211 CP Risk Factors.jpg admin 17 Jan, 2018 22:43 48.10 Kb 2890
9210 CP 3.jpg admin 17 Jan, 2018 21:36 29.21 Kb 1690
9209 CP facts 2.jpg admin 17 Jan, 2018 21:36 94.11 Kb 3640
9208 CP facts.jpg admin 17 Jan, 2018 21:36 75.83 Kb 2422
See any problem with this page? Report it (FINALLY WORKS)