Loading...
 
Toggle Health Problems and D

Adding UVB and heat to fish waste found to produce Vitamin D – April 2024


From 7-dehydrocholesterol to vitamin D3: Optimization of UV conversion procedures toward the valorization of fish waste matrices

Food Chemistry: https://doi.org/10.1016/j.fochx.2024.101373
Yue Sun 1, Laura Alessandroni 1, Simone Angeloni, Erika Del Bianco, Gianni Sagratini

Highlights

  • Fish can be considered good sources of 7-dehydrocholesterol, the vitamin D3 precursor.
  • Optimization of 7-dehydrocholesterol to vitamin D3 UV conversion method.
  • The most performing UV treatment was applied to five different fish species.
  • The optimized method significantly increased the vitamin D3 content in the fishes.
  • Reuse of fish waste as a vitamin D3 source, reducing environmental impact.

Vitamin D, a fat-soluble steroid, has increasingly taken a central role due to its crucial role in human health. It is estimated that about 40% of worldwide population are vitamin D deficient.

The fish industry produces significant quantities of waste daily, with consequent high environmental impact. The aim of this work is to place a first brick for the fish waste reuse as a source of vitamin D3 extracts to be used for nutraceutical purposes. For this purpose, an UV conversion method for transforming the 7-dehydrocholesterol, highly present in fish, in vitamin D3 has been optimized. The UV wavelength, exposure time, temperature, stirring, and UV intensity were optimized using a surface response design tool.

The optimized treatment was applied to five fish species with different fat percentages and the results were very promising reaching vitamin D3 levels >10 times higher than the pre-treatment ones.
 Download the PDF from Vitamin D Life


37 References
  1. Amrein K., Scherkl M., Hoffmann M., Neuwersch-Sommeregger S., Kostenberger M., Tmava Berisha A., Martucci G., Pilz S. & Malle O. (2020) Vitamin D deficiency 2.0: an update on the current status worldwide. European journal of clinical nutrition 74, 1498-513.
  2. Barrea L., Verde L., Grant W.B., Frias-Toral E., Sarno G., Vetrani C., Ceriani F., Garcia-Velasquez E., Contreras-Briceno J. & Savastano S. (2022) Vitamin D: a role also in long COVID-19? Nutrients 14, 1625.
  3. Benedik E. (2021) Sources of vitamin D for humans. International Journalfor Vitamin and Nutrition Research.
  4. Cardwell G., Bornman J.F., James A.P. & Black L.J. (2018) A review of mushrooms as a potential source of dietary vitamin D. Nutrients 10, 1498.
  5. Coppola D., Lauritano C., Palma Esposito F., Riccio G., Rizzo C. & de Pascale D. (2021) Fish waste: From problem to valuable resource. Marine drugs 19, 116.
  6. Di Molfetta I.V., Bordoni L., Gabbianelli R., Sagratini G. & Alessandroni L. (2024) Vitamin D and Its Role on the Fatigue Mitigation: A Narrative Review. Nutrients 16, 221.
  7. Ding X., Jin Q., Fu Z., Zhang S. & Guan L. (2019) Research of ultraviolet radiation on photosynthesis vitamin D3 synthesis about dry juvenile fish fillet. J Food Tech Food Chem 2, 2.
  8. Gatti D. (2019) Colecalciferolo: una sintesi perfetta. Vitamin D-UpDates 2, 1-4.
  9. Gombart A.F., Pierre A. & Maggini S. (2020) A review of micronutrients and the immune system­working in harmony to reduce the risk of infection. Nutrients 12, 236.
  10. Heaney R.P., Recker R.R., Grote J., Horst R.L. & Armas L.A. (2011) Vitamin D3 is more potent than vitamin D2 in humans. The Journal of Clinical Endocrinology & Metabolism 96, E447-E52.
  11. Hidaka A., Suzuki H., Hayakawa S., Okazaki E. & Wada S. (1989) Conversion of provitamin D3 to vitamin D3 by monochromatic ultraviolet rays in fish dark muscle mince. Journal of Food Science 54, 1070-1.
  12. Holick M.F. (2003) Evolution and function of vitamin D. Vitamin D analogs in cancer prevention and therapy, 3-28.
  13. Holick M.F. & Slominski A.T. (2024) Photobiology of vitamin D. In: Feldman and Pike's Vitamin D (pp. 27-45. Elsevier.
  14. Hurst E.A., Homer N.Z. & Mellanby R.J. (2020) Vitamin D metabolism and profiling in veterinary species. Metabolites 10, 371.
  15. Jasinghe V.J. & Perera C.O. (2006) Ultraviolet irradiation: the generator of vitamin D2 in edible mushrooms. Food Chemistry 95, 638-43.
  16. Karkal S.S. & Kudre T.G. (2020) Valorization of fish discards for the sustainable production of renewable fuels. Journal of cleaner production 275, 122985.
  17. Krasniqi E., Boshnjaku A., Ukehaxhaj A., Wagner K.-H. & Wessner B. (2024) Association between vitamin D status, physical performance, sex, and lifestyle factors: a cross-sectional study of community-dwelling Kosovar adults aged 40 years and older. European Journal of Nutrition, 1-14.
  18. Lakra W. & Krishnani K. (2022) Circular bioeconomy for stress-resilient fisheries and aquaculture. In: Biomass, Biofuels, Biochemicals (pp. 481-516. Elsevier.
  19. Lehmann U., Hirche F., Stangl G.I., Hinz K., Westphal S. & Dierkes J. (2013) Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. The Journal of Clinical Endocrinology & Metabolism 98, 4339-45.
  20. Lips P., de Jongh R.T. & van Schoor N.M. (2021) Trends in vitamin D status around the world. JBMR plus 5, e10585.
  21. Lu Z., Chen T., Zhang A., Persons K., Kohn N., Berkowitz R., Martinello S. & Holick M. (2007) An evaluation of the vitamin D3 content in fish: Is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? The Journal of steroid biochemistry and molecular biology 103, 642-4.
  22. Mgbechidinma C.L., Zheng G., Baguya E.B., Zhou H., Okon S.U. & Zhang C. (2023) Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research 28.
  23. Murthy L.N., Phadke G.G., Jeyakumari A. & Vijayakumar S. (2023) Secondary Raw Material and Low-Cost Fish for Fish Meal Production and Its Implications in the Animal Feed Industry. In: Advances in Fish Processing Technologies (pp. 183-200. Apple Academic Press.
  24. Nzekoue F.K., Sun Y., Caprioli G., Vittori S. & Sagratini G. (2022) Effect of the ultrasound-assisted extraction parameters on the determination of ergosterol and vitamin D2 in Agaricus bisporus, A. bisporus Portobello, and Pleurotus ostreatus mushrooms. Journal of Food Composition and Analysis 109, 104476.
  25. Pierens S. & Fraser D. (2015) The origin and metabolism of vitamin D in rainbow trout. The Journal of steroid biochemistry and molecular biology 145, 58-64.
  26. Rihal V., Khan H., Kaur A. & Singh T.G. (2023) Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Critical reviews in food science and nutrition 63, 7772-94.
  27. Romagnoli E., Mascia M.L., Cipriani C., Fassino V., Mazzei F., D’Erasmo E., Carnevale V., Scillitani A. & Minisola S. (2008) Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. The Journal of Clinical Endocrinology & Metabolism 93, 3015-20.
  28. Slominski A.T., Chaiprasongsuk A., Janjetovic Z., Kim T.-K., Stefan J., Slominski R.M., Hanumanthu V.S., Raman C., Qayyum S. & Song Y. (2020) Photoprotective properties of vitamin D and lumisterol hydroxyderivatives. Cell biochemistry and biophysics 78, 165-80.
  29. Slominski A.T., Kim T.-K., Slominski R.M., Song Y., Janjetovic Z., Podgorska E., Reddy S.B., Song Y., Raman C. & Tang E.K. (2022) Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs and PPARy receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 36, e22451.
  30. Slominski A.T., Tuckey R.C., Jetten A.M. & Holick M.F. (2023) Recent Advances in Vitamin D Biology: Something New under the Sun. Journal of Investigative Dermatology.
  31. Sun Y., Nzekoue F.K., Vittori S., Sagratini G. & Caprioli G. (2022) Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation. Food Bioscience 50, 102143.
  32. Sunitarao D. & Raghuramulu N. (1997) Vitamin D3 in Tilapia mossambica: relevance of photochemical synthesis. Journal of nutritional science and vitaminology 43, 425-33.
  33. Vayalil P.K., Elmets C.A. & Katiyar S.K. (2003) RETRACTED: Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 24, 927-36.
  34. Webb A.R. (2006) Who, what, where and when—influences on cutaneous vitamin D synthesis. Progress in biophysics and molecular biology 92, 17-25.
  35. Zmijewski M.A. (2022) Nongenomic activities of vitamin D. Nutrients 14, 5104.

Comment by Vitamin D Life

This initial proof of concept looks promising.
Perhaps it only works on the skin of the fish (where the pre-cursor should be), not the entire fish body
Suspect that UVB penetrates only a few millimeters into the fish waste
Suspect more pre-cursor in fish that are near the surface (makes no sense for fish to produce it if it is never used)
Expect that FAR MORE Vitamin D will be produced when UVB can shine on more of the fish (stirred fish meal?)


See also in Vitamin D Life - How vitamin D is made from sheep wool - Feb 2011

Cholesterol from wool ==> pre-vitamin D then add UVB ==> Vitamin D

Attached files

ID Name Comment Uploaded Size Downloads
21088 Vit D from UV'd fish_CompressPdf.pdf admin 11 Apr, 2024 471.60 Kb 8